SNU Cryptography Seminar: Convex Optimization & Distributed Learning via Alternating Direction Method of Multipliers

Sunghee Yun

VP, AI Technology & Product Strategy Erudio Bio, Inc.

About the Speaker

- VP, AI Technology & Product Strategy @ Erudio Bio, Inc.
- Advisory Professor, Electrical Engineering and Computer Science @ DGIST
- Adjunct Professor, Electronic Engineering Department @ Sogang University
- Technology Consultant @ Gerson Lehrman Gruop (GLG), NYC
- + CTO & Chief Applied Scientist Senior Fellow @ Gauss Labs Inc. ~ 2023
- Senior Applied Scientist @ Amazon.com, Inc. ~ 2020
- Principal Engineer @ Software R&D Center of Samsung DS Division ~ 2017
- Principal Engineer @ Strategic Marketing Team of Memory Business Unit ~ 2016
- Principal Engineer @ Memory Design Technology Team of DRAM Development Lab. ~ 2015
- Senior Engineer @ CAE Team of Samsung Semiconductor ~ 2012
- M.S. & Ph.D. Electrical Engineering (EE) @ Stanford University ~ 2004
- B.S. Electrical Engineering (EE) @ Seoul National University ~ 1998

Today

- convex optimization (cvx opt) & machine learning
 - cvx opt definition
 - dual problem w/ examples & weak/strong dualities
 - KKT & complementary slackness
- distributed learning via alternating direction method of multipliers (ADMM)
 - dual decomposition & method of multipliers
 - ADMM definition & convergence
 - examples: constrained opt, consensus opt, consensus SVM, distributed lasso
- conclusions

Convex optimization

- many (supervised) machine learning (ML) depend on convex optimization (inherently)
- one of few optimization class that can be *actually solved*
- many engineering and scientific problems can be cast into convex optimization problems
- many more can be approximated by convex optimization
- convex optimization sheds lights on intrinsic property and structure of ML algorithms

Mathematical optimization

• mathematical optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \ i = 1, \dots, m$
 $h_i(x) = 0, \ i = 1, \dots, p$

- $f_0: \mathbf{R}^n
 ightarrow \mathbf{R}$ is the objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}$ are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

Optimization examples

- circuit optimization
 - optimization variables: transistor widths, resistances, capacitances, inductances
 - objective: operating speed (or equivalently, maximum delay)
 - constraints: area, power consumption
- portfolio optimization
 - optimization variables: amounts invested in different assets
 - objective: expected return
 - constraints: budget, overall risk, return variance

Optimization example - deep neural network (DNN)

- machine learning
 - optimization variables: model parameters, e.g., connection weights, activation functions, number of layers
 - objective: loss function, e.g., sum of squares of errors
 - constraints: network architecture, e.g., fully-connected, transformer



Convex optimization

• canonical form:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \preceq_{K_i} 0, \ i=1,\ldots,m \\ & Ax=b \end{array}$$

where

-
$$f_0(\lambda x + (1-\lambda)y) \le \lambda f_0(x) + (1-\lambda)f_0(y)$$
 for all $x, y \in \mathbf{R}^n$ and $0 \le \lambda \le 1$

$$- f_i : \mathbf{R}^n \to \mathbf{R}^{k_i}$$
 are K_i -convex w.r.t. proper cone $K_i \subseteq \mathbf{R}^{k_i}$

Convex optimization

- algorithms
 - classical algorithms like simplex method still work well for many LPs
 - many state-of-the-art algorithms develoled for (even) large-scale convex optimization problems
 - * barrier methods
 - * primal-dual interior-point methods
- applications
 - many engineering and scientific problems are (or can be cast into) convex optimization problems
 - statistical parameter estimation, ML, signal processing, (variational) Bayesian inference, bioinformatics, chemical engineering, mechanical engineering

- which one of these problems are easier to solve?
 - (generalized) geometric program with n=1,000,000 variables and m=1,000 constraints

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{p_0} \alpha_{0,i} x_1^{\beta_{0,i,1}} \cdots x_n^{\beta_{0,i,n}} \\ \text{subject to} & \sum_{i=1}^{p_j} \alpha_{j,i} x_1^{\beta_{j,i,1}} \cdots x_n^{\beta_{j,i,n}} \leq 1, \ j = 1, \dots, m \end{array}$$

with $lpha_{j,i} \geq 0$ and $eta_{j,i,k} \in \mathbf{R}$

$$\Rightarrow$$
 can be solved *globally* in your laptop computer

– minimization of $10 {\rm th}$ order polynomial of n=20 variables with no constraint

minimize
$$\sum_{i_1=1}^{10} \cdots \sum_{i_n=1}^{10} c_{i_1,...,i_n} x_1^{i_1} \cdots x_n^{i_n}$$

with $c_{i_1,...,i_n} \in \mathbf{R}$ \Rightarrow you *cannot* solve!

Convex optimization example - $\ensuremath{\mathsf{SVM}^*}$

- problem definition:
 - given $x^{(i)} \in \mathbf{R}^p$: input data, and $y^{(i)} \in \{-1,1\}$: output labels
 - find hyperplane which separates two different classes as distinctively as possible (in some measure)
- (typical) formulation:

minimize
$$\|a\|_2^2 + \gamma \sum_{i=1}^m u_i$$

subject to $y^{(i)}(a^T x^{(i)} + b) \ge 1 - u_i, i = 1, \dots, m$
 $u \ge 0$

- convex optimization problem, hence stable and efficient algorithms exist even for very large problems
- has worked extremely well in practice

Duality

- every (constrained) optimization problem has a *dual problem* (whether or not it's a convex optimization problem)
- every dual problem is a *convex optimization problem* (whether or not it's a convex optimization problem)
- duality provides *optimality certificate*, hence plays *central role* for modern optimization and machine learning algorithm implementation
- duality produces beautiful interpretations, *e.g.*,
 - entropy maximization is dual of (transformed) geometric program
 - exchange problem is dual of consensus problem
 - quadratic program is dual of support vector machine (SVM)
- (usually) solving one readily solves the other!

Lagrangian*

• standard form problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \ i = 1, \dots, m$
 $h_i(x) = 0, \ i = 1, \dots, p$

where $x \in \mathbf{R}^n$ is optimization variable, \mathcal{D} is domain, p^* is optimal value

• Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ with dom $L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$ defined by

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

- λ_i : Lagrange multiplier associated with $f_i(x) \leq 0$ - ν_i : Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function*

• Lagrange dual function: $g: \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$ defined by

$$g(\lambda,\nu) = \inf_{x\in\mathcal{D}} L(x,\lambda,\nu) = \inf_{x\in\mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

-g is *always* concave

-
$$g(\lambda,
u)$$
 can be $-\infty$

• lower bound property: if
$$\lambda \succeq 0$$
, then $g(\lambda, \nu) \leq p^*$
Proof: If \tilde{x} is feasible and $\lambda \succeq 0$, then $f_0(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$. Thus,

$$p^* = \inf_{x \in \mathcal{F}} f_0(x) \ge g(\lambda,
u)$$

where $\mathcal{F} = \{x \mid f_i(x) \leq 0 \text{ for } 1 \leq i \leq m, h_j(x) = 0 \text{ for } 1 \leq j \leq p\}.$

Dual problem

• Lagrange dual problem:

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$

- very good lower bound on p^* (obtained from Lagrange dual function)
- is a convex optimization problem
- optimal value denoted by d^*
- λ , ν are calle *dual feasible* if $\lambda \succeq 0$
- example: standard form LP and its dual

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \succeq 0 \end{array}$

maximize
$$-b^T \nu$$

subject to $A^T \nu + c \succeq 0$

Weak duality

- weak duality implies $d^* \leq p^*$
 - always true (by construction of dual problem)
 - provides *nontrivial* lower bounds, especially, for difficult problems, *e.g.*, solving the following SDP:

maximize
$$-\mathbf{1}^T
u$$

subject to $W + \mathbf{diag}(
u) \succeq 0$

gives a lower bound for max-cut problem

minimize
$$x^T W x$$

subject to $x_i^2 = 1, \ i = 1, \dots, n$

Strong duality

- strong duality implies $d^* = p^*$
 - not necessarily hold; does not hold in general
 - usually holds for convex optimization problems
 - conditions which guarantee strong duality in convex problems called *constraint qualifications*

Slater's constraint qualification*

• strong duality holds for a convex optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \ i = 1, \dots, m$
 $Ax = b$

- if it is strictly feasible, *i.e.*, there exists $x \in \mathbf{R}^n$ such that

$$f_i(x) < 0, \ i = 1, \dots, m, \ Ax = b$$

- Slater's condition
 - also guarantees the dual optimum is attained (if $p^* > -\infty$)
 - linear inequalities do not need to hold with strict inequalities

Duality example: LP

• primal problem:

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \preceq b \end{array}$

• dual function:

$$g(\lambda) = \inf_{x} \left(\left(c + A^{T} \lambda \right)^{T} x - b^{T} \lambda \right) = \begin{cases} -b^{T} \lambda & \text{if } A^{T} \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

• dual problem:

$$\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0 \\ & \lambda \succeq 0 \end{array}$$

- Slater's condition implies that $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x}
- truth is, $p^* = d^*$ except when both primal and dual are infeasible

Duality example: QP*

• primal problem (assuming $P \in \mathbf{S}_{++}^n$):

 $\begin{array}{ll} \text{minimize} & x^T P x\\ \text{subject to} & Ax \preceq b \end{array}$

• dual function:

$$g(\lambda) = \inf_{x} \left(x^{T} P x + \lambda^{T} (A x - b) \right) = -\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda - b^{T} \lambda$$

• dual problem:

$$\begin{array}{ll} \text{maximize} & -\lambda^T A P^{-1} A^T \lambda / 4 - b^T \lambda \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

- Slater's condition implies that $p^*=d^*$ if $A\tilde{x}\prec b$ for some \tilde{x}
- truth is, $p^* = d^*$ always!

Complementary slackness*

- assume strong dualtiy holds, x^* is primal optimal, and $(\lambda^*,
u^*)$ is dual optimal

$$\begin{array}{lll} f_0(x^*) &=& g(\lambda^*,\nu^*) = \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right) \\ &\leq & f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*) \\ &\leq & f_0(x^*) \end{array}$$

- thus, all inequalities are tight, *i.e.*, they hold with equalities
 - x^* minimizes $L(x, \lambda^*, \nu^*)$
 - $\lambda_i^* f_i(x^*) = 0$ for all *i*, known as *complementary slackness*

$$\lambda_i^* > 0 \Rightarrow f_i(x^*) = 0, \quad f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0$$

Karush-Kuhn-Tucker (KKT) conditions*

- KKT (optimality) conditions consist of
 - primal feasibility: $f_i(x) \leq 0$ for all $1 \leq i \leq m$, $h_i(x) = 0$ for all $1 \leq i \leq p$
 - dual feasibility: $\lambda \succeq 0$
 - complementary slackness: $\lambda_i f_i(x) = 0$
 - zero gradient of Lagrangian: $\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$
- if strong daulity holds and x^* , λ^* , and ν^* are optimal, they satisfy KKT conditions!

KKT conditions for convex optimization problem *

• if \tilde{x} , $\tilde{\lambda}$, and $\tilde{\nu}$ satisfy KKT for convex optimization problem, then they are optimal!

- complementary slackness implies $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

- last conidtion together with convexity implies $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- thus, for example, if Slater's condition is satisfied, x is optimal if and only if there exist $\lambda,\,\nu$ that satisfy KKT conditions
 - Slater's condition implies strong dualtiy, hence dual optimum is attained
 - this generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem

Alternating Direction Method of Multipliers (ADMM)

REFERENCE:

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein

Distributed optimization and statistical learning via the alternating direction method of multipliers

What is ADMM for?

- ADMM is for
 - ML with huge data sets

- distributed optimization where
- MANY local agents solving large problem by iteratively solving small problems while being coordinated by ONE central agent

Dual ascent method

• consider convex equality-constrained optimization problem:

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$

- Lagrangian defined by $L(x, y) = f(x) + y^T (Ax b)$
- dual function defined by

$$g(y) = \inf_{x} L(x, y) = -\sup_{x} ((-A^{T}y)^{T}x - f(x)) - b^{T}y = -f^{*}(-A^{T}y) - b^{T}y$$

• dual probem defined by

maximize
$$g(y)$$

Dual ascent method

• gradient method for dual problem:

$$y^{k+1} = y^k + \alpha^k \nabla g(y^k)$$

where $\nabla g(y) = A\tilde{x} - b$ with $\tilde{x} = \operatorname{argmin}_{x} L(x, y)$

• this fact induces the following *dual ascent method*:

$$egin{array}{rcl} x^{k+1} & := & \operatorname*{argmin}_x L(x,y^k) \ y^{k+1} & := & y^k + lpha^k (Ax^{k+1}-b) \end{array}$$

- consists of two stes; x-minimization and dual update

Dual decomposition

• suppose that f is separable in x_1, \ldots, x_N , *i.e.*,

$$f(x) = f_1(x_1) + \cdots + f_N(x_N)$$

where $x = \left[\begin{array}{ccc} x_1 & \cdots & x_N \end{array}
ight]^T$

• then, L is separable, too, since

$$L(x,y) = \sum_{i=1}^{N} f_i(x_i) + y^T \left(\sum_{i=1}^{N} A_i x_i - b\right) = \sum_{i=1}^{N} (f_i(x_i) + y^T A_i x_i) - b^T y$$

• thus, x-minimization step splits into N separate minimizations:

$$x_i^{k+1} = \operatorname*{argmin}_{x_i} L_i(x_i, y^k) = \operatorname*{argmin}_{x_i} (f_i(x_i) + y^T A_i x_i)$$

• parallelism can be employed!

Method of multipliers

- dual ascent fails, e.g., when f is an affine function in x!
- one solution: *augmented Lagrangian*

$$L_{\rho}(x,y) = f(x) + y^{T}(Ax - b) + (\rho/2) ||Ax - b||_{2}^{2}$$

• method of multipliers:

$$egin{array}{rcl} x^{k+1} & := & rgmin_x L_
ho(x,y^k) \ y^{k+1} & := & y^k +
ho(Ax^{k+1}-b) \end{array}$$

Optimality condition*

- optimality conditions: $Ax^* b = 0$, $\nabla f(x^*) + A^Ty^* = 0$
- x^{k+1} minimizes $L_{
 ho}(x,y^k)$, hence

$$0 = \nabla_x L_{\rho}(x^{k+1}, y^k) = \nabla_x f(x^{k+1}) + A^T(y^k + \rho(Ax^{k+1} - b)) = \nabla_x f(x^{k+1}) + A^T y^{k+1}$$

- thus, *dual feasibility* achieved!
- primal feasibility achieved in limit: $\lim_{k\to\infty} Ax^{k+1} = b$

Pros and cons of method of multipliers

• pros: it works even for nondifferentiable or affine f possibly with $+\infty$ value

• cons: the penalty term deprives it of its capability of parallelism!

ADMM

- ADMM
 - retains the robustness of method of multipliers
 - \ast can deal with nondifferentiable f
 - $\ast\;$ can deal with affine f
 - $* \hspace{0.1 cm}$ can deal with f with $+\infty$ value
 - supports decomposition, hence parallelism
- also called "robust dual decomposition" or "decomposable method of multipliers"

ADMM formulation and algorithm

• ADMM formulation:

 $\begin{array}{ll} \mbox{minimize} & f(x) + g(z) \\ \mbox{subject to} & Ax + Bz = c \end{array}$

where $f \mbox{ and } g \mbox{ convex}$

• then, *augmented* Lagrangian defined by

 $L_{\rho}(x, z, y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + (\rho/2) ||Ax + Bz - c||_{2}^{2}$

• finally, ADMM steps:

$$\begin{array}{ll} x\text{-minimization:} & x^{k+1} := \operatorname{argmin}_x L_\rho(x, z^k, y^k) \\ z\text{-minimization:} & z^{k+1} := \operatorname{argmin}_z L_\rho(x^{k+1}, z, y^k) \\ \text{dual update:} & y^{k+1} := y^k + \rho(Ax^{k+1} + Bz^{k+1} - c) \end{array}$$

Optimality conditions*

• optimality conditions

primal feasibility:
$$Ax + Bz - c = 0$$

dual feasibility: $\nabla f(x) + A^T y = 0, \ \nabla g(z) + B^T y = 0$

• since
$$z^{k+1}$$
 minimizes $L_
ho(x^{k+1},z,y^k)$,

$$\begin{array}{rcl} 0 &=& \nabla g(z^{k+1}) + B^T y^k + \rho B^T (A x^{k+1} + B z^{k+1} - c) \\ &=& \nabla g(z^{k+1}) + B^T (y^k + \rho (A x^{k+1} + B z^{k+1} - c)) \\ &=& \nabla g(z^{k+1}) + B^T y^{k+1} \end{array}$$

– thus, $(x^{k+1}, z^{k+1}, y^{k+1})$ satisfies the second dual feasibility condition!

- primal feasibility and the first dual feasibility are achieved as $k \to \infty$

ADMM in scaled form^{*}

• rewrite augmented Lagrangian with r = Ax + Bz - c and $u = (1/\rho)y$:

$$L_{\rho}(x, z, y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + (\rho/2) ||Ax + Bz - c||_{2}^{2}$$

$$= f(x) + g(z) + (\rho/2)(||r||_{2}^{2} + (2/\rho)y^{T}r)$$

$$= f(x) + g(z) + (\rho/2)(||r + (1/\rho)y||_{2}^{2} - ||(1/\rho)y||_{2}^{2})$$

$$= f(x) + g(z) + (\rho/2) ||Ax + Bz - c + u||_{2}^{2} - (\rho/2) ||u||_{2}^{2}$$

- ADMM in scaled form: (with $u^k := (1/
 ho)y^k$)
 - $\begin{array}{ll} x\text{-minimization:} & x^{k+1} := \mathrm{argmin}_x(f(x) + (\rho/2) \|Ax + Bz^k c + u^k\|_2^2) \\ z\text{-minimization:} & z^{k+1} := \mathrm{argmin}_z(g(z) + (\rho/2) \|Ax^{k+1} + Bz c + u^k\|_2^2) \\ \mathrm{dual\ update:} & u^{k+1} := u^k + (Ax^{k+1} + Bz^{k+1} c) \end{array}$
- Note that $u^k = u^0 + \sum_{i=1}^k r^i$ with $r^k = Ax^k + Bz^k c$

SNU cryptography seminar: cvx opt & distributed learning via ADMM

34

Convergence

• assuming that

- f and g are convex, closed, proper, *i.e.*,

$$\{(x,t) \in \mathbf{R}^n \times \mathbf{R} \mid f(x) \le t\}, \ \{(z,t) \in \mathbf{R}^n \times \mathbf{R} \mid g(x) \le t\}$$

are closed, nonempty, convex sets

- L_0 has a saddle point, *i.e.*, existence of (x^*, z^*, y^*) such that

$$L_0(x^*,z^*,y) \leq L_0(x^*,z^*,y^*) \leq L_0(x,z,y^*)$$

holds for all x, z, y

- ADMM converges:
 - iterates approach feasibility: $Ax^k + Bz^k c \rightarrow 0$
 - objective approaches optimal value: $f(x^k) + g(z^k) \rightarrow p^*$

Related algorithms*

- Douglas, Peaceman, Rachford, Lions, Mercier: operator spliting methods (1950s, 1979)
- Rockafellar: proximal point algorithm (1976)
- Dykstra's alternating projections algorithm (1983)
- Spingarn's method of partial inverses (1985)
- Rockafellar-Wets progressive hedging (1991)
- Rockafellar, et al.: proximal methods (1976–Present)
- Bregman iterative methods (2008–Present)

Common patterns

• *x*-update step requires minimizing

$$f(x) + (\rho/2) ||Ax + v^k||_2^2$$

where $v^k = Bz^k - c + u^k$

• *z*-update step requires minimizing

$$g(z) + (\rho/2) \|Bz + w^k\|_2^2$$

where $w^k = Ax^{k+1} - c + u^k$

• a few special cases enable the simplification of these updates (by exploting special structures)

Decomposition

• suppose

- f is block-separable:

$$f(x) = f_1(x_1) + \dots + f_N(x_N)$$

- A comformably block separable, *i.e.*, $A^T A$ is block diagonal

$$A^{T}A = \begin{bmatrix} A_{1}^{T} \\ \vdots \\ A_{N}^{T} \end{bmatrix} \begin{bmatrix} A_{1} & \cdots & A_{N} \end{bmatrix} = \begin{bmatrix} A_{1}^{T}A_{1} & 0 & \cdots & 0 \\ 0 & A_{2}^{T}A_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{N}^{T}A_{N} \end{bmatrix}$$

- then, x-update splits into N parallel updates of x_i
- the very same thing can be applied to z-udpate

Proximal operator*

• when A = I, x-update becomes

$$x^{+} = \underset{x}{\operatorname{argmin}} \left(f(x) + (\rho/2) \|x - v\|_{2}^{2} \right) = \underset{f,\rho}{\operatorname{prox}}(v)$$

• furthermore,

- if $f = I_C$, *i.e.*, f is indicator function of $C \subseteq \mathbf{R}^n$, then

$$x^+ := \Pi_C(v),$$

i.e., projection onto C. - if $f = \lambda \| \cdot \|_1$, *i.e.*, f is l_1 norm, then

$$x_i^+ := S_{\lambda/\rho}(v_i),$$

i.e., soft thresholding where $S_a(v) = (v - a)_+ - (-v - a)_+$

Quadratic objective function*

- assume $f(x) = (1/2)x^T P x + q^T x + r$
- then, x-update becomes

$$x^{+} = \operatorname{argmin}_{x} \left((1/2)x^{T}Px + q^{T}x + r + (\rho/2) \|Ax - v\|_{2}^{2} \right)$$
$$= (P + \rho A^{T}A)^{-1} (\rho A^{T}v - q)$$

• matrix inversion lemma implies

$$(P + \rho A^{T} A)^{-1} = P^{-1} - \rho P^{-1} A^{T} (I + \rho A P^{-1} A^{T})^{-1} A P^{-1}$$

• if direct method is used, cache factorization of $P + \rho A^T A$ or $I_+ \rho A P^{-1} A^T$ cen save tremendous of computation efforts

Solutions for general objective functions

- if f is smooth,
- standard methods can be used:
 - Newton's method, gradient method, quasi-Newton's method
 - preconditioned CG, limited-memory BFGS (scale to very large problems)
- other techniques:
 - warm start
 - early stopping with variant (or adaptive) tolerances as algorithm proceeds

Constrained optimization

• generic constrained optimization:

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathcal{C} \end{array}$

• ADMM form:

 $\begin{array}{ll} \text{minimize} & f(x) + g(z) \\ \text{subject to} & x - z = 0 \end{array}$

where $g(z) = I_{\mathcal{C}}(z)$

• then, ADMM iterations become:

$$\begin{aligned} x^{k+1} &:= & \operatorname{argmin}_{x} \left(f(x) + (\rho/2) \left\| x - z^{k} + u^{k} \right\|_{2}^{2} \right) \\ z^{k+1} &:= & \Pi_{\mathcal{C}} \left(x^{k+1} + u^{k} \right) \\ u^{k+1} &:= & u^{k} + x^{k+1} - z^{k+1} \end{aligned}$$

Lasso formulation

• problem formulation:

minimize
$$(1/2) ||Ax - b||_2^2 + \lambda ||x||_1$$

• ADMM form:

minimize
$$(1/2) \|Ax - b\|_2^2 + \lambda \|z\|_1$$

subject to $x - z = 0$

• ADMM iterations:

$$egin{array}{rcl} x^{k+1} &:= & \left(A^TA +
ho I
ight)^{-1} \left(A^Tb +
ho z^k - y^k
ight) \ z^{k+1} &:= & S_{\lambda/
ho} \left(x^{k+1} + y^k/
ho) \ y^{k+1} &:= & y^k +
ho \left(x^{k+1} - z^{k+1}
ight) \end{array}$$

Lasso computational example

- for dense $A \in \mathbb{R}^{1500 \times 5000}$, *i.e.*, 5000 predictors and 1500 measurements
- computation efforts:
 - 1.32 seconds for factorization
 - 0.03 seconds for ADMM iterations
 - 2.97 seconds for lasso solve
 - 4.45 seconds for full regularization path, e.g., $30~\lambda s$
- only takes short sciprt

Sparse inverse covariance selection (SICS)*

• S: empirical covariance of samples from $\mathcal{N}(0, \Sigma)$, with Σ^{-1} sparse, e.g., Gaussian Markov random field

• estimate Σ^{-1} via l_1 regularized maximum likelihood:

minimize $\operatorname{Tr}(SX) - \log \det X + \lambda \|X\|_1$

• methods: COVSEL (Banerjee et al 2008) or graphical lasso (Friedman, Hastie, and Tibshirani, 2007)

• SICS problem:

minimize
$$\operatorname{Tr}(SX) - \log \det X + \lambda \|X\|_1$$

• ADMM form:

minimize
$$\operatorname{Tr}(SX) - \log \det X + \lambda \|Z\|_1$$

subject to $X - Z = 0$

• ADMM iterations:

$$X^{k+1} := \operatorname{argmin}_{X} \left(\operatorname{Tr}(SX) - \log \det X + (\rho/2) \| X - Z^{k} + U^{k} \|_{F}^{2} \right)$$

$$Z^{k+1} := S_{\lambda/\rho} \left(X^{k+1} + U^{k} \right)$$

$$U^{k+1} := U^{k} + (X^{k+1} - Z^{k+1})$$

Solution for X-update^{*}

• eigenvalue decomposition:

$$\rho(Z^k - U^k) - S = Q\Lambda Q^T$$

• diagonal matrix forming:

$$\tilde{X}_{ii} = \frac{\lambda_i + \sqrt{\lambda_i^2 + 4\rho}}{2\rho}$$

• then, X-udpate can be achieved by

$$\boldsymbol{X}^{k+1} = \boldsymbol{Q} \boldsymbol{\tilde{X}} \boldsymbol{Q}^T$$

SICS example

- for $\Sigma^{-1} \in \mathbf{R}^{1000 \times 10000}$ with 10000 nonzero entries
- ADMM takes 3–10 minutes
- for comparision,
 - COVSEL takes >25 minutes when Σ^{-1} is 400×400 tridiagonal matrix

Consensus optimization (CO)

• sum of N functions as objective

minimize
$$\sum_{i=1}^N f_i(x)$$

- for example, f_i could be the loss function of *i*th training data block

• ADMM form:

minimize
$$\sum_{i=1}^{N} f_i(x_i)$$

subject to $x_i - z = 0$

- x_i is *i*th local variable
- -z is the global variable
- $x_i z = 0$ are consistency or consensus constraints
- regularization can be added via g(z)

CO using ADMM

• Lagrangian:

$$L_{\rho}(x, z, y) = \sum_{i=1}^{N} \left(f_i(x_i) + y_i^T(x_i - z) + (\rho/2) \|x_i - z\|_2^2 \right)$$

• ADMM iterations:

$$\begin{aligned} x_i^{k+1} &:= & \operatorname*{argmin}_{x_i} \left(f_i(x_i) + y_i^{k^T}(x_i - z) + (\rho/2) \|x_i - z\|_2^2 \right) \\ z_i^{k+1} &:= & \frac{1}{N} \sum_{i=1}^N \left(x_i^{k+1} + (1/\rho) y_i^k \right) \\ y_i^{k+1} &:= & y_i^k + \rho(x_i^{k+1} - z^{k+1}) \end{aligned}$$

Consensus classification

- given data set, (a_i, b_i) , i = 1, ..., N where $a_i \in \mathbf{R}^n$, $b_i \in \{-1, 1\}$
- linear classifier $sign(a^Tw + v)$ with (vector) weight or support vector w, offset v
- margin for *i*th data is $b_i(a_i^T w + v)$
- loss for *i*th data is $l(b_i(a_i^T w + v))$ where *l* is loss function, *e.g.*, hinge, logistic, probit, exponential, *etc*.
- choose w, v so as to minimize

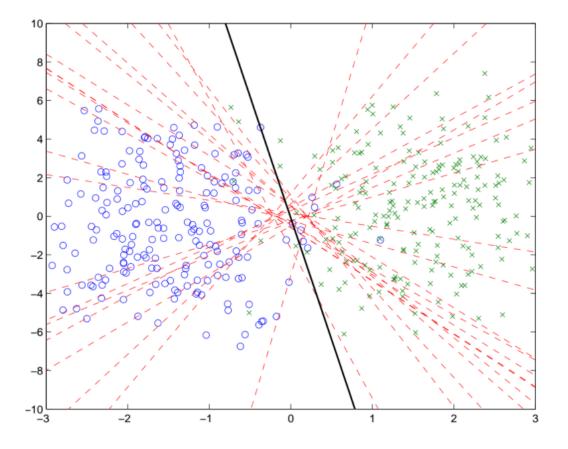
$$\frac{1}{N} \sum_{i=1}^{N} l(b_i(a_i^T w + v)) + r(w)$$

- r(w) is regularization term, e.g., l_2 , l_1 , l_p , etc.
- split data and use ADMM consensus to solve the optimization problem

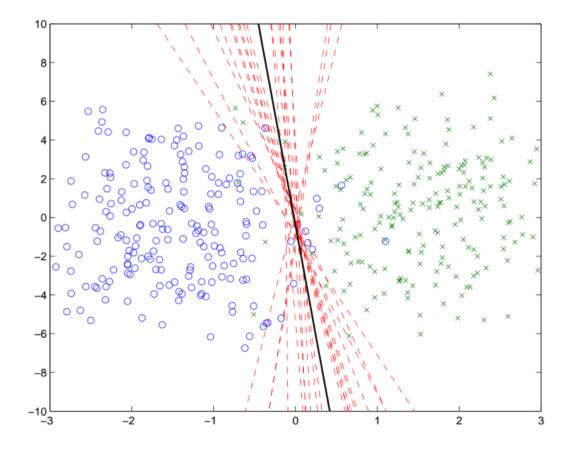
Consensus SVM example

- hinge loss $l(u) = (l u)_+$ with l_2 regularization
- toy problem with n = 2, N = 400 to illustrate
- data split into 20 groups, in worst possible way: each group contains only positive or negative data

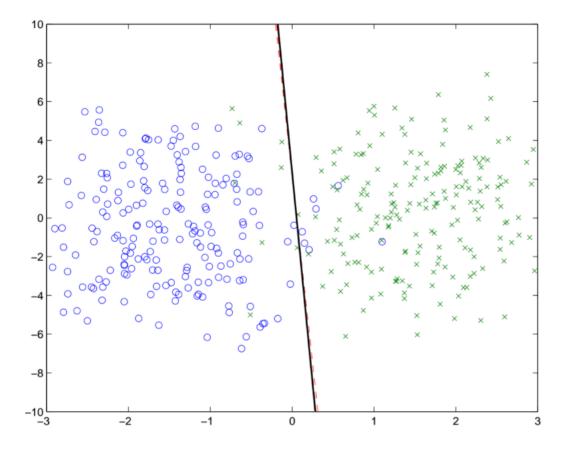
The 1st Epoch



The 5th Epoch



The 40th Epoch



Distributed lasso

- example with dense $A \in \mathbf{R}^{m \times n}$ where m = 400,000 and n = 8,000
 - distributed solver written in C using MPI and GSL
 - no optimization or tuned libraries (like ATLAS, MKL)
 - split into 80 subsystems across 10 (8-core) machines
- computation efforts:
 - 30 seconds for loading data
 - $\,5$ seconds for factorization
 - 2 seconds for subsequent ADMM iterations
 - 6 seconds for lasso solve (~ 15 ADMM iterations)

Exchange problem*

• typical problem formulation:

minimize
$$\sum_{i=1}^{N} f_i(x_i)$$

subject to $\sum_{i=1}^{N} x_i = 0$

- dual of consensus
- constraint is called equilibrium or market clearing constraint
- one interpretation: N agents exchanging n items so as to minimize total cost
 - $(x_i)_j > 0 \Leftrightarrow \text{agent } i \text{ receives } (x_i)_j \text{ of item } j \text{ from exchange}$
 - $(x_i)_j < 0 \Leftrightarrow \text{agent } i \text{ contributes } -(x_i)_j \text{ of item } j \text{ to exchange}$
- duality interpretation:
 - y^* , *i.e.*, optimal dual variable, can be interpreted as *valid prices* for items
 - real (or virtual) cash payment $(y^*)^T x_i$ by agent i

ADMM conclusions

- ADMM
 - provides single algorithm framework competitive with special algorithms
 - induces systematic distributed algorithms with convergence proof
 - whereas all federated learning based on (asynchronous) update does not provide systematic learning
 - can be easily applied to non-convex cases
- the underlying idea can be used for many ML areas
 - computer vision (CV), natural language processing (NLP), classical statistical learning